
Formal Verification of a Power Controller
Using the Real-Time Model Checker UPPAAL

KlausHavelund
�
, Kim GuldstrandLarsen

�
, andArneSkou

�
�

NASA AmesResearchCenter, RecomTechnologies,CA, USA
havelund@ptolemy.arc.nasa.gov�

BRICS,Aalborg University, Denmark�
kgl,ask � @cs.auc.dk

Abstract. A real-timesystemfor power-down control in audio/videocompo-
nentsis modeledandverified usingthe real-timemodelchecker UPPAAL. The
systemis supposedto residein anaudio/videocomponentandcontrol(readfrom
andwrite to) links to neighboraudio/videocomponentssuchasTV, VCR and
remote–control.In particular, thesystemis responsiblefor thepoweringup and
down of thecomponentin betweenthearrival of data,andin orderto do soin a
safewaywithout lossof data,it is essentialthatnolink interruptsarelost.Hence,
a componentsystemis a multitaskingsystemwith hardreal-timerequirements,
andwepresenttechniquesfor modelingtimeconsumptionin suchamultitasked,
prioritizedsystem.Thework hasbeencarriedoutin acollaborationbetweenAal-
borg Universityandtheaudio/videocompany B&O. By modelingthesystem,3
designerrorswereidentifiedandcorrected,andthe following verificationcon-
firmedthevalidity of thedesignbut alsorevealedthenecessityfor anupperlimit
of the interruptfrequency. The resultingdesignhasbeenimplementedandit is
goingto beincorporatedaspartof anew productline.

1 Intr oduction

Sincethebasicresultsby Alur, CourcoubetisandDill [3, 4] on decidabilityof model
checkingfor real–timesystemswith densetime, a numberof tools for automaticver-
ification of hybrid andreal–timesystemshave emerged[7,14,10]. Thesetools have
by now reacheda state,wherethey are matureenoughfor applicationon industrial
developmentof real-timesystemsaswehopeto demonstratein thispaper.

Onesuchtool is thereal–timeverificationtool UPPAAL
�

[7] developedjointly by
BRICS

�
atAalborg UniversityandDepartmentof ComputingSystemsatUppsalaUni-

versity. Thetool providessupportfor automaticverificationof safetyandboundedlive-
nesspropertiesof real–timesystemsandcontainsa numberof additionalfeaturesin-
cludinggraphicalinterfacesfor designingandsimulatingsystemmodels.Thetool has
beenappliedsuccessfullyto a numberof case–studies[13,18,5,6,16,9] which can
roughlybedividedin two classes:real–timecontrollersandreal–timecommunication
protocols.
�

SeeURL: http://www.docs.uu.se/docs/rtmv/uppaalfor informationaboutUPPAAL.�
BRICS–BasicResearchin ComputerScience– isabasicresearchcentrefundedby theDanish
governmentat AarhusandAalborg University.

Industrialdevelopersof embeddedsystemshave beenfollowing the above work
with great interest,becausethe real–timeaspectsof concurrentsystemscan be ex-
tremely difficult to analyzeduring the designand implementationphase.One such
company is Bang � Olufsen(B&O) – having developmentand productionof fully
integratedhomeaudio/videosystemsasa mainactivity.

The work presentedin this paperdocumentsa collaborationbetweenAAU (Aal-
borg University) – underthe BRICS project– andB&O on the developmentof one
of thecompany’snew designs:a systemfor audio/videopower control.Thesystemis
supposedto residein anaudio/videocomponentandcontrol (readfrom andwrite to)
links to neighboraudio/videocomponentssuchas TV, VCR and remote–control.In
particular, thesystemis responsiblefor thepoweringupanddown of thecomponentin
betweenthearrival of data,andin orderto do so,it is essentialthatno link interrupts
arelost.Thework is a continuationof anearliersuccessfulcollaboration[13] between
thesametwo organizations,whereanexistingaudio/videoprotocolfor detectingcolli-
sionson a link betweenaudio/videocomponentswasanalyzedandfoundto containa
timing errorcausingoccasionaldataloss.Theinterestingpoint was,thattheerrorwas
a decadeold, like theprotocol,andthat it wasknown to exist – but normaltestinghad
neverbeensufficient in trackingdown thereasonfor theerror.

The collaborationbetweenB&O andAAU spanned3 weeks(4 including report
writing), andwasvery intensethe first week,wherea representative from B&O vis-
ited AAU, anda first sketchof the modelwasproduced.During the next two weeks,
themodelwasrefined,and15propertiesformulatedby B&O in naturallanguagewere
formalizedandthenverifiedusingtheUPPAAL modelchecker. Duringameeting,revi-
sionsto themodelandpropertiesweresuggested,andafinal effort wasspentonmodel
revision,re-verificationandreportwriting. Thepresentpaperis anintensiveelaboration
of thepreliminaryreport[12] � .

Thepaperis structuredasfollows.Section2 containsaninformaldescriptionof the
B&O protocol,andin section3 we presentthe UPPAAL modelinglanguageandtool.
In section4 we presentour techniquesfor modelingtimedtransitionsandinterruptsin
the UPPAAL language.Section5 presentsthe formal modelingof this protocolin the
UPPAAL language,while section6 presentsthe verificationresults.Finally section7
providesanevaluationof theprojectandpointsout futurework.

2 Informal Description of the Power Down Protocol

In this section,we provide an informal descriptionof thedesignedprotocolfor power
down control in an audio/videocomponent.As advocatedin [15], we divide the de-
scriptioninto environment,syntax,andprotocolrules.

2.1 ProtocolEnvir onment

A typical B&O configurationconsistsof a numberof components,which areintercon-
nectedby differentkindsof links carryingaudio/videodataand(or) control informa-
tion. Eachcomponentis equippedwith two processorscontrollingaudio/videodevices�

A full versionof thepaperis availableat
http://ic-www.arc.nasa.gov/ic/projects/amphion/people/havelund.

andlinks, andamongothertasks,theprocessorsmustminimizetheenergy consump-
tion whenthecomponentgoesstandby. Eachprocessormaybein oneof two modes:
(1) active, whereit is operationalandcanhandleits devicesand links, (2) standby,
whereit is unableto doanythingexceptwakeupandenteractivemode.Oneof thepro-
cessorsactsasa masterin thesensethatit mayordertheotherprocessor(theslave) to
enterstandby mode(andtherebyreduceenergy consumption).Dueto physicallaws	
a processorcannotleave standby modevia oneatomicaction,andthepurposeof the
protocolis to ensurethat standby operationis handledin a consistentway, i.e. when
oneof theprocessorsentersor leavesstandby mode,thisis alsorecognizedby theother
processor. Furthermore,whenever a processorsensesvalid dataon anexternallink, it
mustleave standby operation.Also, the real-timedurationfor switchingbetweenthe
modesmaynotexceeda givenupperlimit in ordernot to losemessages.

Figure1 illustratestheprocessorinterconnectionandourmodelof thesoftwarear-
chitecturefor oneof the processors.Eachprocessorcommunicateswith devicesand
othercomponentsvia externallinks
 , andthetwo processorsareinterconnectedvia an
internallink. Thesoftwarearchitecturewill bealmostidenticalfor thetwo processors,
andin this reportwe concentrateon theIOP3212processor– theslave processor. The
mainsoftwaremoduleis theIOP processwhich communicateswith theAP processor,
theexternallink drivers,andthe interrupthandlersaccordingto theprotocolrulesde-
scribedbelow. The protocol forms the crucial part of the softwaredesign,becauseit
mustassurethatno dataandinterruptsarelost (in orderto leave standby operationat
duetime).

ap_down

ap_active

ap_down_ack

ap_down_nack

IOP

AP 3002 processor

IOP 3212 processor device links

data/no_data

interrupt/no_interrupt

check driver

check interrupt

interrupt
handlers

drivers

Fig.1. Softwarearchitectureof thepower down protocol.Theprotocolentity process(IOP) re-
ceivesprotocolcommands(left arrows) from thedriversandinterrupthandlersby issuingcheck
commands(right arrows).�

It takes e.g. approx.1 ms to make the processoroperationalwhen it hasbeenin standby
operation.�
Thefigureillustratesaconfigurationwith oneexternallink, theLSL link.

2.2 ProtocolSyntax

The power down protocol entity (the IOP process)communicateswith its environ-
ment (AP processor, link driversand interrupthandlers)via the protocolcommands
in theset: ap down, ap active, ap down ack,ap down nack,data,no data,interrupt,
no interrupt� . The ap downcommandis sentfrom the AP processorandcommands
the IOP processorto enterstandby operation.Thedata commandis sentfrom a link
driver andindicatesthat meaningfulinput hasbeendetectedon the link, whereasthe
no data commandindicatesthat thereis no input from the link. Likewise, the inter-
rupt (no interrupt) commandis sent from from the link interrupt handlerand indi-
catesthataninterrupt(or no interrupt)hasbeenreceivedat thelink interruptinterface.
Thecommandsap active, ap downack, ap downnack informstheAP3002processor
aboutstatechangesof theprotocol,thatis, ap activeis sentwhentheIOP3212proces-
sor becomesactive, ap downack is sentwhenit acceptsto enterstandby mode,and
ap downnack is sentwhenstandby cannotbeentered.

2.3 ProtocolRules

In orderto give anintuitiveexplanationof theprotocol,wedescribebelow in aninfor-
malwaythemajorprotocolrules,whichmustbeobeyedby theIOPprotocolentity. We
leave out thedetailson communicationwith interrupthandlersanddrivers,which will
bedescribedin theformalizationsection.In orderto structurethedescription,wedefine
thefollowing majorphases(seeFigure2 below) for theentity: theactivephase, where
theIOP is in normal(active) operation,thecheck driver phase, wheretheIOP process
is waiting for a driver status(no data/data)in orderto decidewhetheror not to leave
theactive phase,thestandby phase, wheretheIOP processoris out of operation,and
thecheck interruptsphase, wheretheIOP processoris waiting for aninterrupthandler
status(no interrupt/interrupt)in order to decidewhetheror not to enterthe standby
phase.We use?/! to indicateprotocolinput/outputin theusualway.

Activerule In the active phase,the IOP protocol entity must enterthe checkdriver
phase,wheneveraap downcommandis receivedfrom theAP processor.

Check driver rule In the checkdriver phase,the IOP protocol entity commandsthe
driversto checkwhetheror not meaningfuldataarereceived from the links. The
outcomeof thecheckdefinesthesucceedingphaseaccordingto Figure2.

Standby rule Wheneveraninterruptis receivedin thestandby phase,theIOPprotocol
entitymustenterthecheckdriverphase.

Check interruptsrule In thecheckinterruptsphase,theprotocolentity commandsthe
interrupthandlersto checkfor pendinginterrupts.If no interruptsarepending,the
standby phasecansafelybeentered.Otherwise,thecheckdriverphaseis entered.

The above ruleshave to be implementedin sucha way, that (1) Whenever an in-
terrupt is received andmeaningfuldatais presenton the given link, the active phase
mustbe entered,and(2) Whenever a down signal is received from the AP processor
andno interruptsandvalid dataarepresent,the standby phasemustbeentered.The
delaycausedby softwareof thesetransitionsmaynot exceed ����������� sinceotherwise
datamaybelost.

check interrupts

stand by

active

data

down signal
data

interrupt

interrupt

no interrupt

no data

no data

check driver

check driver

check driver

data

no data

initial state

Fig.2. Major protocolphases.Thedottedlinesindicatetransitionsleadingtowardspower down.
The full lines are leadingtowardspower up. The two neighboring’check driver’ phasesare
necessaryin orderto beableto ignorenoisefrom thecommunicationlines.

Theinformal rulesform thebasisfor themodeldesign,andin theanalysissection,
wepresentacompletelist of protocolrequirementsin termsof propertiesof theformal
protocolmodel.

3 The UPPAAL Model and Tool

UPPAAL is a tool box for symbolicsimulationandautomaticverificationof real–timed
systemsmodeledasnetworks of timed automata[4] extendedwith global sharedin-
teger variables.More precisely, a modelconsistsof a collectionof non–deterministic
processeswith finite control structureandreal–valuedclockscommunicatingthrough
channelsandsharedintegervariables.The tool box is developedin collaborationbe-
tweenBRICSatAalborg UniversityandDepartmentof ComputingSystemsatUppsala
University, andhasbeenappliedto severalcase–studies[13,18,5,6,16,9].

Thecurrentversionof UPPAAL is implementedin C++, XFORMS andMOTIF and
includesthefollowing mainfeatures:

– A graphicalinterfacebasedon Autograph[8] allowing graphicaldescriptionsof
systems.

– A compilertransforminggraphicaldescriptionsinto atextualprogrammingformat.
– A simulator, which providesa graphicalvisualizationandrecordingof the possi-

ble dynamicbehaviors of a systemdescription.This allows for inexpensive fault
detectionin theearlymodelingstages.

– A modelchecker for automaticverificationof safetyandbounded–livenessproper-
tiesby on–the–flyreachabilityanalysis.

– Generationof (shortest)diagnostictracesin caseverificationof a particularreal–
time systemfails. The diagnostictracesmay be graphicallyvisualizedusingthe
simulator.

A systemdescription(or model) in UPPAAL consistsof a collectionof automata
modelingthefinite controlstructuresof thesystem.In additionthemodelusesa finite
setof (global)real–valuedclocksandintegervariables.

Considerthe modelof Figure3. Themodelconsistsof two componentsA andB
with controlnodes A0, A1, A2, A3 � and B0, B1, B2, B3 � respectively. In addition
to thesediscretecontrol structures,the modelusestwo clocksx andy, one integer
variablen anda channela for communication.

y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0 y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4 n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5

x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1

A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0
(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1 A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2 A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0
(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)

c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1 B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2 B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

Fig.3. An exampleUPPAAL model

The edgesof the automataaredecoratedwith threetypesof labels:a guard, ex-
pressinga conditionon thevaluesof clocksandintegervariablesthatmustbesatisfied
in orderfor the edgeto be taken; a synchronizationactionwhich is performedwhen
the edgeis taken forcing asin CCS[19] synchronizationwith anothercomponenton
a complementaryaction� , andfinally a numberof clock resetsandassignmentsto in-
tegervariables.All threetypesof labelsareoptional:absenceof a guardis interpreted
as the condition ������� , and absenceof a synchronizationaction indicatesan internal
(non–synchronizing)edgesimilar to � –transitionsin CCS.ReconsiderFigure3. Here
theedgebetweenA0 andA1 canonly betaken,whenthevalueof theclocky is greater
thanor equalto . Whentheedgeis takentheactiona! is performedthusinsistingon
synchronizationwith B on thecomplementaryactiona?; that is for A to take theedge
in question,B mustsimultaneouslybe ableto take the edgefrom B0 to B1. Finally,
whentakingtheedge,theclocky is resetto � .

In addition,control nodesmay be decoratedwith so–calledinvariants, which ex-
pressconstraintson theclockvaluesin orderfor controlto remainin aparticularnode.
Thus,in Figure3, controlcanonly remainin A0 aslong asthevalueof y is no more
than ! .

Formally, statesof a UPPAAL model are of the form " #%$'&)(, where # is a control
vectorindicatingthecurrentcontrolnodefor eachcomponentof thenetworkand& is an
assignmentgiventhecurrentvaluefor eachclockandintegervariable.Theinitial state
*

Givena channelnamea, a! anda? denotecomplementaryactionscorrespondingto sending
respectively receiving on thechannela.

of a UPPAAL modelconsistsof the initial nodeof all components+ andanassignment
giving thevalue � for all clocksandintegervariables.A UPPAAL modeldeterminesthe
following two typesof transitionsbetweenstates:

DelaytransitionsAs long asnoneof the invariantsof thecontrolnodesin thecurrent
stateareviolated,timemayprogresswithoutaffectingthecontrolnodevectorand
with all clock valuesincrementedwith the elapseddurationof time. In Figure3,
from the initial state , ".-)/0$%12/3(4$'576 � $98:6 � $%;<6 �>= time may elapse)? � time
units leadingto the state , ".-)/2$%12/3(4$'5@6A 2? � $'8B6A)? � $';B6 �>= . However, time
cannotelapse� timeunitsasthiswouldviolatetheinvariantof B0.

Action transitionsIf two complementarylabelededgesof two differentcomponents
are enabledin a statethen they can synchronize.Thus in state , ".-)/0$%12/3(4$'5C6
)? � $98D6E)? � $';F6 ��= the two componentscan synchronizeon a leadingto the
new state , "G-IH�$'1JH�(4$95:6 � $98:6 � $';<6 �K= (notethatx, y, andn have beenap-
propriatelyupdated).If a componenthasaninternaledgeenabled,theedgecanbe
takenwithout any synchronization.Thusin state , "G-IH�$'1JH�(4$95L6 � $98M6 � $%;N6 �K= ,
theB–componentcanperformwithout synchronizingwith A, leadingto thestate
, "G-IH�$'1)O3(4$95P6 � $'8Q6 � $%;P6R! = .

Finally, in orderto enablemodelingof atomicityof transition–sequencesof a par-
ticularcomponent(i.e.withouttime–delayandinterleavingof othercomponents)nodes
maybemarkedascommitted(indicatedby ac–prefix).If in a stateoneof thecompo-
nentsis in a controlnodelabeledasbeingcommitted,nodelayis allowedto occurand
any actiontransition(synchronizingor not)mustinvolvetheparticularcomponent(the
componentis so–to–speakcommittedto continue).In the state "'".-JHK$%1�H�(4$'5S6 � $'8T6
� $%;R6 � (B1 is committed;thuswithout any delay the next transitionmust involve
theB–component.Hencethetwo first transitionsof B areguaranteedto beperformed
atomically. Besidesensuringatomicity, thenotionof committednodesalsohelpsin sig-
nificantlyreducingthespace–consumptionduringverification.Channelscanin addition
bedefinedasurgent: whentwo componentscansynchronizeon anurgentchannelno
furtherdelayis allowedbeforecommunicationtakesplace.

In this sectionandindeedin themodelingof theaudio/videoprotocolpresentedin
the following sections,thevaluesof all clocksareassumedto increasewith identical
speed(perfectclocks).However, UPPAAL alsosupportsanalysisof timedautomatawith
varyinganddrifting time–speedof clocks.This featurewascrucialin themodelingand
analysisof thePhilipsAudio–Controlprotocol[5] usingUPPAAL.

UPPAAL is ableto checkfor reachabilityproperties,in particularwhethera certain
combinationof control-nodesandconstraintson clock anddatavariablesis reachable
from an initial configuration.The propertiesthat can be analyzedareof two forms:
“A[]p” and“E<>p”, wherep is a formula over clock variables,datavariables,and
control-nodepositions.Intuitively for “A[]p” to besatisfied,all reachablestatesmust
satisfyp. Dually, for “E<>p” to besatisfied,somereachablestatemustsatisfyp.

U
indicatedgraphicallyby adoublecirclednode.

4 Timed Transitions and Interrupts

In thissection,weshallintroducetechniquesfor dealingwith acoupleof conceptsthat
appearin theprotocol,andwhich arenot supporteddirectly by the UPPAAL notation.
Theseconceptsareon theonehandtimeslicing in combinationwith timeconsuming
transitions, andon theotherhandprioritized interrupts. We referto time slicingasthe
activity of delegatingandschedulingexecutionrights to processesthat all run on the
samesingleprocessor. Transitionsnormallydon’t taketimein UPPAAL, but thisoccurs
in theprotocol.Interruptsis a well known concept.

First,wegiveasmallexampleillustratingwhatweneed.Thenwesuggestthetech-
niquesthatweshallapplyin themodelingof theprotocol.

4.1 The Problem

Assumea systemwith two processesA andB runningon a singleprocessor. Assume
further, thattheseprocessescanbeinterruptedby aninterrupthandler. Thesituationis
illustratedin Figure4, which is not expressedin the UPPAAL language,but ratherin
someinformalextensionof thelanguage.

i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1
(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)

j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2
(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)

v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1
(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)

w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2
(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)(7-12)

y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2
(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)(5)

x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1
(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2) aaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbb

cccccccccccccccccaaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb ccccccccccccccccc

cccccccccccccccccbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaa

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

InterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterrupt

Fig.4. Whatwewantto express

Eachedgemodifiesa variable(A modifiesx andy, B modifiesv andw, andthe
interrupthandlermodifiesi andj). Theseassignmentsonly serveto identify theedges
andhave no real importancefor theexample.Eachedgeis furthermorelabeledwith a
timeslotwithin parenthesis(2, 5, 7-12), indicatingtheamountof timeunitstheedge
takes.Theslot7-12 meansanywherebetweenV and WYX timeunits.

Supposetheinterrupthandlerdoesnot interrupt.Thenthesemanticsshouldbethe
following: A andB executein an interleavedmannermodelingthe time slicing of the
processor– eachtransitiontakingtheamountof timeit is labeledwith. No unnecessary
timeis spentin intermediatenodes(exceptwaiting for theotherprocessto execute).At
theend,assoonasbothA andB arein thenodec, at least W[Z (X]\7^_\7^`\aV) andat
most Xcb (Xd\:^d\:^d\aW�X) timeunitswill havepassed.

An interruptcanoccurat any momentandexecutes“to theend” whenoccurring.
Thatis, it goesfrom nodea tocwithoutneitherA norB beingallowedto executein the

meantime.If weassumethattheinterrupthandlercanalsointerrupt,thenit will change
theabovenumbersto e ! (�Yfhg:edg:�) and � (ecijg:edgk�).
Or goalis now to formulatethis in theUPPAAL language.Consideranapproachwhere
nodesareannotatedwith timeconstraintsonlocalclocks,expressingthetimeconsumed
by thepreviousedge.Thissolutiondoesnotwork sincethetwo automatamayconsume
time “together”,anddoesnot reflectthe desiredbehavior, sincethey aresupposedto
run on a singleprocessor. Let us first modeltime consumingtransitions,ignoring the
interruptsfor amoment.

4.2 Modeling Timed Transitions

In asingleprocessorsettingit is naturalto handovertimecontrolto asingle“operating
system”process.Figure5 illustratessuchaprocess,calledTimer, usinga localclockk.

k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7k >= 7
k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5k == 5

k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2k == 2

k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0k := 0

finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?finish?

t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t7_12?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2?t2? t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?t5?

w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12w7_12
(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)(k <= 12)

w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5w5
(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)(k <= 5)

w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2w2
(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)(k <= 2)

c:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:backc:back

gogogogogogogogogogogogogogogogogo
(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)(k <= 0)

TimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimerTimer

Fig.5. TheTimer

It hasastartnode,namedgo, in whichtimeis constrainedtonotprogressatall. This
meansthat in orderfor time to progress,oneof theedgest2?, t5? or t7 12? must
be taken.Theseedgesthenleadto nodeswheretime canprogressthe corresponding
numberof time units, whereafter control returnsimmediately(back is a committed
nodejustusedto collecttheedges)to thego node.

Now let us turn to the processesA and B, which are shown in Figure 6. These
now communicatewith theTimer, askingfor time slots.Every time unit T that in the
informal model,Figure4, was in brackets(T) is now expressedastT!. Whenfor
exampleA takestheedgefrom nodea to nodeb, theTimergoesinto thenodew2, and
staystherefor e time unitswhile A staysin nodeb. Hence,the time consumedby an
edgeis really consumedin the nodeit leadsto. We have, however, guaranteedthat B
for example,cannotgo to thenodeb andconsumetime “in parallel” sincethatwould
requirea communicationwith Timer, andthis is not readyfor thatbeforeit returnsto
thenodego.

WhenA reachesthenodec, it hasnotyetconsumedl timeunits(emgL�), it hasonly
consumede . The � will beconsumedwhile in nodec. In orderto reacha statewhere
we for sureknow thatall thetime hasbeenconsumed,we addanextrad node,which
is reachedby communicatingfinish! to theTimer. This forcestheTimer to “finish”

x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1
t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!

y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2
t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!

v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

ddddddddddddddddd

dddddddddddddddddaaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb ccccccccccccccccc

cccccccccccccccccbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaa

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

Fig.6. A andB communicatingwith theTimer

thelasttime consumption.Now wecanexpressandverify thefollowing trueproperty,
wheregc is a globalclockvariablethatis never reset:

A[] (A.d and B.d) imply ((19 <= gc) and (gc <= 24))

Thatis, if bothA andB reachnoded, thenthey will dosowithin W[Z0n_Xcb timeunits.Note
thatdueto thedesignof theTimer, timecannotprogressfurtherwhenthathappens(the
Timer will bein thego nodewheretime cannotprogress).Of courseonecandesigna
Timerthatallowstimeto progressfreelywhenaskedto,andthatis in factwhathappens
in theprotocol.Basicallyoneintroducesanidle nodein theTimer, thatcanbeentered
uponrequest,andwheretimecanprogresswithoutconstraints.

It is possibleto model suchsingleprocessortime schedulingin modelcheckers
lacking real-timefeatures,suchas for exampleSPIN [15]. However, when trying to
formulateandverify propertieswheretimeticksaresummedup,suchexplicit modeling
easilyleadsto statespaceexplosion.

4.3 Modeling Interrupts

Now we incorporatethe interrupthandler. Thebasicideais to give a priority to each
process,andthenmaintaina variable,which at any momentcontainsthepriority cur-
rentlyactive.Processeswith a priority lower thanthecurrentcannotexecute.Whenan
interruptoccurs,thecurrentpriority is setto a valuehigherthanthoseof theprocesses
interrupted.

ProcessesA andB canfor examplehave priority o while theinterrupthandlergets
priority W . Whenthe interruptoccurs,the currentpriority is thenset to W , preventing
priority o processesfrom running.We introducethevariablecur for this purpose,see
Figure7. TheTimerstaysunchanged.

Notehow thevariablecur occursin guardsof A andB, andhow it is assignedto
by theinterrupthandler. In thismodel,wecanverify thefollowing propertyto betrue:

A[] (A.d and B.d and Interrupt.d) imply
(26 <= gc and gc <= 31)

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1v := 1
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2w := 2
t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!t7_12!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2y := 2
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1x := 1
t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!

finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!finish!

cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0cur := 0
j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2j := 2
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!

cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1cur := 1
i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1i := 1
t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!

ddddddddddddddddd

ddddddddddddddddd

ddddddddddddddddd

aaaaaaaaaaaaaaaaa bbbbbbbbbbbbbbbbb ccccccccccccccccc

cccccccccccccccccbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaa

ccccccccccccccccc

bbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaa

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

InterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterruptInterrupt

Fig.7. Dealingwith interrupts

5 Formalization in UPPAAL

In this section,we shall formalizethe systemin UPPAAL. We startwith an overview
of the componentsand their interactionvia channelsandsharedvariables.Thenwe
describetheIOPin detail.

5.1 ComponentOverview

The systemconsistsof 7 automata,asillustratedin Figure8. The Timer controlsthe
time slicing betweenthe componentsusingthe techniquedescribedin section4.2. In
addition,thereis anenvironmentwhich generatesinterruptscorrespondingto dataar-
riving on thelinks; hencethisenvironmentis referredto astheInterruptGenerator.

The componentscommunicatevia channelsynchronizationand via sharedvari-
ables.The figure illustratesthe channelconnectionsby fully drawn arcs,eachgoing
from onecomponent(theonethatdoesa send“!”) to another(theonethatdoesa re-
ceive “?”). Also, all sharedvariablesareplottedinto thefigure, in italics, with dotted
lines indicating their role asmessagecarriers,from the processthat typically writes
to the variableto the processthat typically readsthe variable.This notationis infor-
mal, but it shouldgive an overview of the sharedvariablesandthe role they play in
communication.Channelsandvariablesaredescribedbelow.

5.2 The Channels

TheAP signalstheIOPto godown by issuinganap down! (whichtheIOPthencon-
sumesby performinga dualap down?). Thechannelsap down ack and
ap down nack correspondto the IOP’s responseto suchan ap down signal from
the AP. They representthe acknowledgment(ack) respectively the negative acknowl-
edgment(nack)that the closingdown hassucceededrespectively not succeeded.The
ap active channelis usedby theIOP to requesttheAP to becomeactive.

The channelsreset, wait, wait int, i reset, i wait areall usedto op-
eratethe timer. Basically, thereset andi reset channelsareusedto activatethe
timer, to startdeliveringtimeslots,while thewait, wait int andi wait channels
areusedto dis-activatethetimer, to stopdeliveringtimeslots.Differentchannelsfor re-
setting(reset andi reset) respectively waiting (wait, wait int andi wait)

LSL DriverIOP

AP Timer ti

ap_down

ap_active

ap_down_ack

ap_down_nack

reset

wait

wait_int

ti

i_reset

i_wait

ti

i_reset

i_wait

ti

AP Int
Handler

LSL Int
Handler

Kernel

Int Gen.

generated_ap_interrupt

enabled_lsl_interrupt

generated_lsl_interrupt

lsl_command

lsl_datalsl_running

sw_stand_by
sleep_op
sleeping

ap_interrupt lsl_interrupt
some_interrupt

cur

lsl_interrupt_ex

Fig.8. Thecomponents

are neededdue to different interpretationsof thesecommandsin different contexts.
Wheneveractivated,thetimer thendeliverstime slotsto theIOP, theLSL (Low Speed
Link) driver, andtheinterrupthandlerswhentheseissuesignalson thet p channels.

5.3 The SharedVariables

Theinterruptgeneratorgeneratesinterruptscorrespondingto dataarriving on thelinks.
Suchaninterruptis generatedby settingthevariablegenerated lsl interrupt
to � (�����q�). The LSL interrupt handlerthen reactson this by interruptingthe IOP
or the driver, whichever is running.A resultof suchan interrupt is that the variable
lsl interrupt is set to � . The IOP readsthe valueof this variable,andhenceis
triggeredto dealwith new dataif it equals� . In orderfor theinterruptgeneratorto gen-
erateinterruptsatall, thevariableenabled lsl interruptmustbe � . Concerning
theAP, thereis agenerated ap interrupt andanap interrupt, but thereis
noenabled ap interrupt. TheAP itself playstheroleasAP interruptgenerator,
andhencesetsthegenerated ap interrupt to � , while theAP interrupthandler
reactsto this by settingtheap interrupt to � . Thevariablesome interrupt is
� whenevereitherap interrupt or lsl interrupt is � .

Thevariablecur is usedto securethataninterrupthandlergetshigherpriority than
theprocessit interrupts.Notethatin this sense,theIOP andthedriverhave thelowest
priority (�), while the LSL interrupthandlerhasonehigher(�), andthe AP interrupt
handlerhasthehighest(e). Hence,wheneverthevalueof cur is � , theIOPandtheLSL
driver areallowedto execute.WhentheLSL interrupthandlerstartsexecuting,it sets

thevalueto � , wherebythe IOP anddriver areno longerallowedto execute.TheAP
interrupthandlercanfurther interruptall the previousprocesses,assigninge to cur,
wherebyall otherprocesseswith lowerpriority aredeniedto execute.

We saidthattheAP interrupthandlercaninterrupttheLSL interrupthandler. This
is a truth with modifications.In fact,it is not allowedto interruptduringtheinitializa-
tion phaseof theLSL interrupthandler. This is modeledby introducinga semaphore
lsl interrupt ex. It is usedto excludetheAP interrupthandlerfrom interrupting
theLSL interrupthandlerduringthelatter’sfirst activities.

The IOP sendsmessagesto the LSL driver by assigningvaluesto the variable
lsl command with thefollowing meanings:� = Initialize thedriver, e = Closedown
the driver, and = Activatethe driver. After initialization of the driver, the IOP can
readthe resultsof the driver’s activity (whetherit is still runningandwhetherthere
aredataor not) in thevariableslsl running andlsl data. Sincethemodelis a
reductionfrom a biggermodelalsoinvolving theAP driver, wehadearlyin thedesign
a needfor maintaininga variablesome running, beingtrue if eitherap running
or lsl running was true, and likewise we neededa variablesome data, being
trueif eitherlsl data or othersimilar variablesweretrue.Thesetwo variableshave
survivedafterwehavereducedthemodel.

Thethreevariablessw stand by, sleeping andsleep op arecentralto the
closingdown procedure,and the interactionbetweenthe IOP and the interrupthan-
dlers.Figure 9 illustratesthe relevant piecesof codein the IOP (when approaching
standby mode),respectively theInterrupthandlers.To startwith theIOP, thevariable
sleep op is akind of “emergencybreak” whichcanbe“pulled” by theinterrupthan-
dler. TheIOP assigns������� to this variable,andit hasto be ������� beforegoingto sleep.
The interrupthandlercanchangethe valueof sleepop “in last micro second”.Next,
theIOP assigns������� to thevariablesw stand by whenapproachingthestand by
node.Hencethis variableis �����q� in a certaincritical time zonejust beforeclosing
downr . Whenthe IOP finally goesdown (entersthe stand by mode),the variable
sleeping becomes������� .

The valueof sw stand by is usedby the interrupthandlerswhen activatedto
seewhetherthe IOP is in its critical closingdown zone.If so, they assignthe valuesqt # � � to the variablesleep op, and this will then prevent the IOP from going to
sleep.Theinterrupthandlersalso“wake up” (sleeping := 0) theIOP in caseit is
sleeping(sleeping == 1). Thesleeping variableis usedby theinterrupthandler
to direct theamountof time usedto restarttheIOP. If sleeping == 1 it takes900
microseconds,otherwiseit is instantaneous.WeshallseetheIOPalgorithmformulated
in UPPAAL below.

5.4 The IOP

The IOP, Figure10, is obtainedby refining (in an informal sense)the abstractmodel
presentedin Figure 2. The model is refinedusingstaterefinementas well asaction
refinement. By staterefinementwemeanthatcertainstates(theovals)areexpandedout
to sub–transitionsystemswith new statesconnectedwith new (labeled)arcs.We have
u

In the C-implementation,the variablesw stand by is a register informing the processor
hardwareabouttheapproachingclosedown.

IOP: Interrupt Handler:
sleep_op := 1; If sleeping == 1 Then
sw_stand_by := 1; ‘‘spend 900 ms’’
If sleep_op == 1 Then sleeping := 0
sleeping := 1; End;
‘‘stand by’’ If sw_stand_by == 1 Then

End; sleep_op := 0;
‘‘after interrupt’’: sw_stand_by := 0
sw_stand_by := 0 End;
‘‘go up’’

Fig.9. Thevariablessw stand by, sleeping andsleep op

enclosedthesenew sub–systemsin boxeson Figure10 suchthat they canbe easier
relatedto Figure2. Note,however, that this is not formal UPPAAL notation.By action
refinementwe meanthat alsoarcsareexpandedout to suchsub–transitionsystems.
Concerningstaterefinement,wehaveexpandedeach“c heck driver” stateinto acouple
of states:driver call – representingthepointwherea driverhasbeencalled– and
driver return – representingthepoint wherethedriver returns.Thestate“c heck
interrupts” hasbeenexpandedout to a small transitionsystemconsistingof the four
states:insert noop, set stand by, check interrupts andcheck noop.

TheIOPstartsbeingactive,in thenodeactive. In thisnodeit doesnotneedtime
slots,hencethe timer is supposedto be inactive. Note thatalthoughthe IOP is in the
nodeactive, andhenceintuitively is active,from a technicalpointof view, wedon’t
seeit asrequiringtimeslots,sinceit doesnot takeany transitions.

Now it canreceive anap down signalfrom the AP, orderingit to closedown. It
thenproceeds(up, left – referringto theapproximatepositionon thefigure)by reset-
ting the timer – reset!, indicatingthatnow it wantsprocessortime slotsnecessary
to closedown. It then initializes the variableslsl running (to �) andlsl data
(to �) preparingthe activation of the LSL driver, initially assumingthat thereareno
data.Note the “priority 0” guard– cur == 0 – andthe time slot demand– t6! –
requiring ! micro secondsto initialize thesevariables.Thetime constant,andall other
time constantsin themodel,have beenestimatedby theprotocoldevelopersat B&O.
Whenthedriver laterreturns,it will havesetthevariablelsl running to � , andnow
theIOP cancheckthevalueof lsl data. Thedriver is, however, first activatedwith
theassignmentof e (closedown) to thevariablelsl command in theedgeleadingto
thenodedriver call1.

In this nodethe IOP waits for the driver to finish its job. If at that point, in node
driver return1, lsl data equals� thereis data,andthe IOP mustactivatethe
driver– lsl command is assignedthevalue – andit mustrespondto theAP with a
negativeacknowledgment– ap down nack!. If on theotherhandlsl data equals
� , then thereareno dataon the link, and the IOP canproceedsuccessfullyto close
down, next checkingwhetherthereareany interrupts.First,however, it acknowledges
via an ap down ack! signal to the AP, and thengoesto the nodeinsert noop
(up,right) to checkinterrupts.A possibletracefrom hereleadsto thenodestand by,
wherethe IOP is sleeping,andcanonly be wakenedby an interrupt.The waiting for
an interruptis doneby issuinga wait int! signalto the timer just beforeentering
thestand by node.Whenaninterruptoccursthereafter, thetimerwill ensurethatthe
IOP is re-activatedimmediately.

ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!

reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!
sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1sw_stand_by := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!t900_1100!
lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3

ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!ap_down_ack!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!t37!
enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0
generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!t640_840!
some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!t7!
enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1
generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!
lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0
some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0
lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1
some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!t17!
sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1sleep_op := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!wait_int!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!
sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0sleep_op == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!t3!
sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1sleep_op == 1
sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1sleeping := 1cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0

t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!
some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!t2!
some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0some_interrupt == 0

lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3lsl_command := 3
ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!ap_active!

cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0cur ==0
t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!t41_300!
some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!t314!
enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0enabled_lsl_interrupt := 0
generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0generated_lsl_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!t18!
enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1enabled_lsl_interrupt := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!t6!
lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0
some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0
lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1
some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?ap_down?

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!t8!
some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0some_data == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0some_running == 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1some_data == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!t24!
sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0sw_stand_by := 0
lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0lsl_data := 0
some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0some_data := 0
lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1lsl_running := 1
some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1some_running := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!
ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0
lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0
some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!t13!
lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2

ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!ap_down_nack!

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!t9!
ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0ap_interrupt := 0
lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0lsl_interrupt := 0
some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0some_interrupt := 0

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!t300!
lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1lsl_command := 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!t5!
lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2lsl_command := 2

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!t1!
some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1some_interrupt == 1

cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0cur == 0
wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!wait!

s_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_actives_active

back_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_activeback_to_active

enter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_activeenter_active

down_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_receiveddown_received

set_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_byset_stand_by

issue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commandsissue_active_commands

down_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verifieddown_verified
disable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interruptdisable_lsl_interrupt

driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1driver_return1

driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1driver_call1

enable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interruptenable_lsl_interrupt

going_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_downgoing_down
insert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noopinsert_noop

w_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_byw_stand_by

check_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noopcheck_noop

check_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interruptscheck_interrupts

send_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_commandsend_active_command
driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3driver_return3

clear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interruptclear_lsl_interrupt

driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3driver_call3

re_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interruptre_enable_lsl_interrupt

noisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoisenoise

activeactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactive

driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2driver_return2

driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2driver_call2

wake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_upwake_up

clear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interruptsclear_interrupts

issue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lslissue_down_lsl

send_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nacksend_nack

clear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_intclear_int

issue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_upissue_lsl_up

re_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_downre_issue_lsl_down

stand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_bystand_by

now_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_waitnow_wait

Power_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOPPower_Down_IOP

Fig.10.TheIOP

If on theotherhand,beforereachingthestand by node,aninterrupthasalready
occurred,thenthe IOP will avoid going into that nodeandinsteadgo directly to the
wake up node.Hence,in thisnodeweassumethataninterrupthasoccurred,andnow
theLSL driverhasto bere-started,sinceapparentlytheremustbedata.Thismeansre-
initializing thevariableslsl running andlsl data, andthenassigningthevalue
� (initialize) to lsl command. In thenodedriver call2, the IOP thenwaits for
the LSL driver to return.If thereis data– lsl data equals � – the AP is asked to
becomeactive – ap active! – andthe IOP goesinto thenodeactive. Note that
whenenteringthisnode,await! signalis issuedto thetimerto dis-activateit. If onthe
otherhandthereareno data– lsl data equals� – thenwhathasbeenencountered
is noise,andthenodenoise is entered.In thisnodetheIOPwantsto closedown, but
beforedoing this, the driver is asked to closedown – lsl command is assignedthe
value e . TheIOP thenwaitsin thenodedriver return3 for thedriversresponse.

Now, if thereis data– lsl data equals� theAP is activated– ap active! –
andthenodeactive is entered.If on theotherhandthereareno data– lsl data
equals� – thentheIOP returnsto thenodeinsert noop (up, right), readyto check
theinterruptsagain,andclosedown (if aninterruptdoesnotoccur, etc.).

Note that sometransitionslabeledwith channelcommunicationsarenot labeled
with the priority guardcur == 0. Thesechannelsareelsewheredefinedasurgent,
meaningthatcommunicationmusttakeplaceimmediatelywheneverenabled.

6 Verification of SelectedProperties

In this sectiona collectionof propertieswill beformulatedandverifiedusingtheUP-
PAAL logic andverificationtool. In orderto verify theseproperties,a setof techniques
for annotatingthemodelandfor definingobserverautomatahave beenapplied.These
techniquesarepresentedfirst. Thenfollows the formulationandverificationof the in-
dividualpropertiesof which thereare15.

6.1 Model Annotation and TestAutomata

Amongstthepropertiesformulatedby B&O, in particularthreekindsweretypical and
neededspecialtechniques.Thegeneralprinciplebehindthethreetechniques,to bede-
scribedbelow, is to annotatethe model by addingnew variablesor communication
actions,andthenobservethese,eitherby mentioningthevariablesin theformulaeto be
verified(thefirst two techniques)or by lettingthenew communicationactionssynchro-
nizewith a furthermoreaddedobserver automaton(thethird technique).Theneedfor
thesetechniquesis causedby theexistinglogic in whichit only is possibleto stateprop-
ertieslike:“A[]p” and“E<>p”, wherep is anatomicpredicateoverprogramvariables
andnodes(henceno nestingof modaloperators).Theoreticalaswell aspracticalwork
is currentlyundertaken to extendthe UPPAAL logic, definingtranslationsinto model
annotationsandobserversasoutlinedbelow.
The FLAG Technique Thefirst technique,calledthe FLAG techniquefor later refer-
ence,is illustratedin Figure11.SupposewehaveanautomatonA containingtwo states
(amongstothers):a andb, andsupposewe wantto verify, that“there is a pathfroma
to b” .

searched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched pathsearched path

a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1a_reached := 1
aaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaa

AAAAAAAAAAAAAAAAA

There must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to bThere must be a path from a to b

Annotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_AAnnotated_A

E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1E<> b and a_reached == 1

Fig.11.AutomatonA andits annotation

Note, that thecurrentlogic doesnot allow nestedmodaloperators,henceit is for
examplenotpossibleto statethisas:“E<> (a and E<>b)” sayingthatthereexists

apathsuchthateventuallynodea is reachedandfrom therenodeb canbereached.The
techniqueconsistsof annotatingautomatonA, obtainingautomatonAnnotatedA, by
addinga booleanflag variablea reached, which initially hasthevalue � , andwhich
is assignedthe value � when passingthrougha. The propertycan now be formally
statedasfollows: “E<>(b and a reached == 1)”. Thatis, eventuallynodeb is
reached,afterhaving passedthroughnodea.

The DEBT technique Thesecondtechnique,calledtheDEBT technique,is illustrated
in Figure12.SupposewehaveanautomatonB containingthreestates(amongstothers):
a, b andx, andsupposewe want to verify, that “every path from a to b mustpass
throughx” .

wrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong path

good pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood path

debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1 debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1debt := 1

debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0debt := 0

wrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong pathwrong path

good pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood pathgood path

N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3N3

N1N1N1N1N1N1N1N1N1N1N1N1N1N1N1N1N1 N2N2N2N2N2N2N2N2N2N2N2N2N2N2N2N2N2aaaaaaaaaaaaaaaaa

xxxxxxxxxxxxxxxxx

bbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaa

xxxxxxxxxxxxxxxxx

Annotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_BAnnotated_B

A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0A[] b imply debt == 0

BBBBBBBBBBBBBBBBB

Every path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass xEvery path from a to b must pass x

Fig.12.AutomatonB andits annotation

In animaginedextendedlogic thiscouldbeformulatedasfollows:
“A[] (a imply ((not b) Until x))” sayingthatif atany timea is reached,
then“not b” will holduntil x hasbeenreachedv . Thetechniqueconsistsof annotating
automatonB, obtainingautomatonAnnotatedB, by addinga booleanvariabledebt,
which initially hasthevalue � , andwhichis assignedthevalue � whenpassingthrough
a. Furthermore,whenpassingthroughx it is resetto � – thedebthasbeen“cashed”.
Thepropertycannow beformally statedasfollows:“A[] b imply debt == 0”.
That is, if at any point nodeb is reached,thendebt mustnot be � , sincethatwould
indicatethatnodea hadbeenreachedbefore,but notx in between.

The OBSERVER Technique Thelasttechnique,calledtheOBSERVER technique,is il-
lustratedin Figure13.SupposewehaveanautomatonC containingtwo nodes(amongst
others):a andb, andsupposewe want to verify, that “fr om nodea, nodeb mustbe
reachedwithin w timeunits”.

In anextendedlogic thiscouldbeformulatedasfollows:“A[] (a imply A<T>
b)” sayingthatif atany timea is reached,theneventually– within w timeunits– node
b will be reached.The techniqueconsistsof annotatingautomatonC, obtainingau-
tomatonAnnotatedC, by addingtwo kindsof communicationactions,eachof which
x

NotethattheUntil operatorheremustbeweakin thesensethatnodex neednot bereached
atall, andhencenodeb neednotbereachedneither, which is whatwewant.

end!

begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!begin!

begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?begin?
c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0c := 0

c == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tc == Tend?end?end?end?end?end?end?end?end?end?end?end?end?end?end?end?end?

bbbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

bbbbbbbbbbbbbbbbb

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

waitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwaitwait
(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)(c <= T)

goodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgoodgood badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

CCCCCCCCCCCCCCCCC

From a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within TFrom a to b in within T

Annotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_CAnnotated_C ObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserverObserver

A[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not badA[] not bad

Fig.13.AutomatonC, its annotationandobserver

communicateswith an addedobserver that measurestime. Let’s first look at Anno-
tatedC. Whenin nodea, abegin! signalcanbe issued,telling theobserver to start
measuretime.Whenreachingnodeb, nomatteralongwhichpath,anend! signalis is-
sued,telling theobserver to stopmeasuretime.Thechannelend is declaredasurgent,
henceit will betakenassoonasnodeb is reached.

TheObserverautomatonrestsin thestart nodeuntil it receivesabegin? signal
(nodea reached),whereafter it initializes its local clockc andentersthenodewait
wheretime can progress.Time can,however, only progressy time units due to the
nodeinvariant,whereafter the nodebad is entered.If on the other handan end?
signalis receivedbeforethat,thenthenodegood is entered.Thepropertycannow be
formally statedasa propertyof theobserver: “A[] not bad”. Thatis, theObserver
will never reachnodebad: anend? signalwill alwaysbereceived(b reached)before
y timeunits.

6.2 Property Verification

In thissectionweshallpresenttheresultsof analyzingin UPPAAL variousdesiredprop-
erties.Thepropertiesasdirectly formulatedby B&O arelistedbelow, with explanatory
commentsin brackets.Thelisting is just supposedto give thereadera generalfeeling
of thekindsof propertiesformulated.

1. sleeping mustnot changefrom 0 to 1 while sleep op hasthevalue0. (TheIOP must
not go to sleepif there hasbeenan interrupt – seeFigure 9 for an explanationof these
variables.)

2. Theremustbea pathfrom active to stand by andvice versa.(It mustbepossiblefor
theIOP to switch betweenits twofinal states.)

3. Every path from active to noise mustpassthroughstand by (The IOP musthave
beenasleepbefore reaching the noise statewhere it on its way up due to an interrupt
discovers that theinterrupt is “false”, andhencecausedbynoiseonly.)

4. The variablesleeping must not changefrom 0 to 1 while lsl interrupt is 1 or
ap interrupt is 1 (TheIOP mustnot go to sleepaslong asthere is an untreatedinter-
rupt.)

5. The shortestway from driver return1 to driver call2 doesnot take more than
1500 z s (If theIOP on its waydownverifiesthat thelink is emptyby calling thedriver, and

thenimmediatelythereafterdata arrive (an interrupt occurs) no more than {}|�~Y~]� s must
passbefore thedriver is calledagain.)

6. Theshortestway fromdriver return1 toactive doesnot takemorethan1500 � s (If
theIOP on its waydowndiscovers dataon thelink by calling thedriver, thenno more than
{�|[~Y~�� s mustpassbefore theIOP is activeagain.)

7. The shortestway from driver return3 to driver call2 doesnot take more than
1500 � s (Like5, but in a differentplacein theprotocol’s execution.)

8. The shortestway from driver return3 to active doesnot take morethan1500 � s
(Like6, but in a differentplacein theprotocol’s execution.)

9. If thelastvalueof thevariablelsl command hasbeen1 or 3 (driver startingcommands),
thenthevalueof sleepingmustnotchangefrom 0 to 1 (If thelastcommandissuedto the
driver wasa “start command”,thentheIOP mustnot go to sleep.)

10. If thelastvalueof lsl command hasbeen3 (activatedriver), thenthenext valuemustnot
be1 (initialize driver),andviceversa(In betweentwodriver startingcommandsmustcome
a driver closingcommand.)

11. No morethan1500 � s mustpassfrom aninterruptoccursuntil all driversareactive

12. It mustbepossiblefor bothinterrupthandlersto wantto assign~ to sleep op at thesame
time, while in addition this variable’s value is already ~ (Intuition missing– “technical”
property.)

13. If bothinterrupthandlerswantto assign~ tosleep op at thesametime,thentheIOPwill
bein oneof thenodes:set stand by, check interrupts, check noop,
w stand by,stand by, orwake up (If bothanLSLandanAPinterruptoccur, andboth
interrupthandlers believethat theIOP is approaching standbymode, thenthis is thecase.)

14. It mustbepossibleto comefrom thenodenoise to thenodestand by (In caseIOP has
discoverednoiseonthelink, it will reach standbymodeandgoto sleep,unlessdataarrive.)

15. I shouldnot be possibleto comefrom the nodestand by to the nodeactive without
synchronizingon the channelap active (The IOP cannotget from standby modeto
activemodewithoutactivatingtheAP.)

Figure14 shows the verificationresults,indicatingthe outcome(satisfiedor not)
andtheverificationtechniqueused.Thosepropertiesnotverifiedusingany of thethree
techniquesoutlinedin section6.1havebeenverifiedusingotherandsimplertechniques:
“ trivial ” meansthepropertywasseencorrectwithoutverification.“ formula” meansthat
thepropertycouldbedirectly statedin the UPPAAL temporallogic. Finally, “ formula
+ aux.variable” meansthatby addinganadditionalvariablebeingupdatedin appro-
priateplaces,thepropertycouldbedirectly statedin theUPPAAL temporallogic. The
propertieswereverifiedusingUPPAAL version ������� from March1998,on a SunUltra
Sparc60with ����� MB mainmemory.

Properties� and ��� turnedout not to be satisfied,andafter having examinedthe
errortracesB&O recognizedthatthesepropertieswerewrongly formulatedandhence
the“error” tracesshowedvalid behaviors.

Properties� –� , ontheotherhand,areinterestingin thesensethattheirverifications
failed and causedB&O to reconsidertheir design.In particularproperty � gave an
errortrace,wherea singleLSL interruptand18 AP interrupts,all consumingtime,are
generatedbeforethenext driver call. As a result,B&O decidedto only allow oneAP
interruptto occurin their implementation.

No. Satisfied?Technique Comment Memory Time
(MB) (min:sec)

1 YES trivial
2 YES FLAG 5.3 0:5
3 NO DEBT shouldnotbesatisfied 4.1 0:2
4 YES formula 8.2 0:9
5 NO OBSERVER 18AP interruptscauseserror 36.0 1:42
6 NO OBSERVER 24AP interruptscauseserror 22.0 0:56
7 ? OBSERVER stateexplosion
8 NO OBSERVER 79AP interruptscauseserror 157.0 33:39
9 YES formula+ aux.variable 8.3 0:9
10 YES formula+ aux.variable 8.7 0:25
11 YES OBSERVER 16.0 0:41
12 NO formula shouldnotbesatisfied 7.9 0:8
13 YES formula 8.2 0:9
14 YES FLAG 8.0 0:8
15 YES trivial

Fig.14.Verificationresults

7 Conclusion

During a periodof 3 weeks,a modelof B&O’s Power Down protocolwasdeveloped
andverifiedusingthe UPPAAL languageandmodelchecker. Thefirst weekconsisted
of anintensecollaborationbetweenAAU andB&O, wheretheB&O representativevis-
itedAAU. Duringthisweek,afirst sketchof themodelwaswrittendown in UPPAAL ’s
language.Themodelwasbasedon aninitial designsketchmadeby thecompany rep-
resentative. Thework carriedout during the following two weekswasmainly carried
out by AAU. Hence,during thesecondweek,a techniquewasintroducedfor dealing
with timedtransitionsandinterrupts.Duringthissameweek,themodelwasreducedby
omittingcertaincomponentsin orderto obtaina modelbeingverifiablewithin reason-
abletime andmemoryspace.In otherwords,at theendof thesecondweek,a model
wasproducedthat wasreadyfor verification.At the beginningof the third (andlast)
week,variouspropertiesto beverifiedwereformulatedby B&O in naturallanguage.
Thesewerethentranslatedinto theUPPAAL temporallogic, togetherwith variousmod-
ificationsto themodel,andall verificationswerethencarriedout.

After the collaboration,the company madea C-codeimplementation,andafter a
testingphase(which did not revealany designerrors),the implementationis by now
readyto beput into operationin thenew company product.

During the developmentof models,we found that the notion of timed automata
andtheir graphicalrepresentationservedextremelywell asa communicationmedium
betweenthe industrialprotocoldesignerandthe tool expertdoing thesimulationand
verification.In addition,thegraphicalsimulationfeaturesof UPPAAL leadto fastde-
tectionof (obvious)errorsin theearlymodels.

The protocolwasverifiedcorrectwrt. the 15 propertiesformulatedby B&O, and
althoughnobugswereidentified,variouscritical timeconstantswereidentified,which
shouldbeobeyedin orderto keeptheprotocolcorrect.Variousunexpected,but correct,
behaviors were furthermoredemonstrated,challengingthe understandingof the pro-
tocol. Overall, the experienceappearedto increaseB&O’s confidencein their design.
The fact that3 errorswerecaughtduring the modelingphasesuggeststhat just spec-

ifying a systemcanbe very informative. In fact,B&O claimedthey hadgot a better
understandingof their systemthisway.

Thecollaborationhasbeenbeneficialfor bothpartners:B&O now considerstools
like UPPAAL asviablemeansto improve thedesignprocessfor time-criticalsoftware.
Also, in orderto modelthesystem,we have developedtechniquesfor modelingtimed
transitionsandprioritizedinterrupts.A timedtransitionis a transitionwhichconsumes
time, like codein a programwhich takestime to execute.It is a specialcircumstance,
that several processesrun on a singleprocessor. To the bestof our knowledge,such
techniqueshavenotbeenpresentedelsewhere.

WhatconcernstheUPPAAL tool set,weanticipateinvestigatingtechniquesfor ver-
sioncontrol,(keepingtrackof severalrelatedmodels),andweconsidertool supportfor
definingabstractions.Both themesappearnon-trivial in fact.ConcerningtheUPPAAL

language,a technicalcontribution of thework is a way of modelingtimed transitions
and interruptsin a settingwhereseveral processesshareoneprocessor. In the forth-
comingnew versionof UPPAAL, the introductionof parameterizedtimedautomatons
will supporta morestructuralway to definetime consumingtransitionsthanwe have
presentedin thispaper. In [11], theproblemof supportingtaskschedulingis treated.It
is likely thatthiswork will beincludedin laterversionsof UPPAAL.

In this work, we have sketcheda numberof patternswhich maybeusedto define
propertiesof real-timesystems.In [1,2] the limits of UPPAAL ’s modelcheckinglan-
guagearecharacterized.In futureversionsof UPPAAL, its timedlogic will bemodified
accordingto theseresults- therebysupportingthedefinitionof thepatternsin a more
directway.

AcknowledgmentsThe B&O representative was Johnny Kudahl,who we thank for
beingextremelycollaborative andproductive,aswell during themodelbuilding asin
formulatingthepropertiesto beverified.Also thanksto thereviewers.

References

1. L. Aceto, A. Bergueno,andK. G. Larsen. Model Checkingvia ReachabilityTestingfor
TimedAutomata.In B. Steffen,editor, Proceedingsof TACAS’98, volume1384of Lecture
Notesin ComputerScience, pages263–280,1998.

2. L. Aceto,P. Bouyer, A. Burgueno,andK. G. Larsen. TheLimit of Testingfor TimedAu-
tomata.In Proceedingsof FSTTCS’98, LectureNotesin ComputerScience,1998.

3. R. Alur, C. Courcoubetis,andD. Dill. Model-checkingfor Real-Time Systems.In Proc.of
Logic in ComputerScience, pages414–425.IEEEComputerSocietyPress,1990.

4. R. Alur andD. Dill. Automatafor Modelling Real-Time Systems.In Proc. of ICALP’90,
volume443of LectureNotesin ComputerScience, 1990.

5. J. Bengtsson,D. Griffioen, K. Kristoffersen,K. G. Larsen,F. Larsson,P. Pettersson,and
W. Yi. Verificationof an Audio Protocolwith Bus Collision Using UPPAAL. In Proc. of
CAV’96, volume1102of LectureNotesin ComputerScience. Springer–Verlag,1996.

6. J. Bengtsson,K. G. Larsen,F. Larsson,P. Pettersson,andW. Yi. UPPAAL — A Tool Suite
for Symbolic and CompositionalVerificationof Real-Time Systems. In Proc. of the 1st
Workshopon Tools and Algorithmsfor the Constructionand Analysisof Systems, volume
1019of LectureNotesin ComputerScience. Springer–Verlag,May 1995.

7. J. Bengtsson,K. G. Larsen,F. Larsson,P. Pettersson,and W. Yi. UPPAAL in 1995. In
Proc. of the 2nd Workshopon Tools and Algorithmsfor the Constructionand Analysisof

Systems, number1055 in LectureNotesin ComputerScience,pages431–434.Springer–
Verlag,March1996.

8. A. Bouali, A. Ressouche,andV. Roy R. de Simone. The FC2Toolset. Lecture Notesin
ComputerScience, 1102,1996.

9. P.R.D’Ar genio,J.-P. Katoen,T. Ruys,andJ.Tretmans.ModellingandVerifying aBounded
RetransmissionProtocol.In Proc.of COST247,InternationalWorkshoponAppliedFormal
Methodsin SystemDesign, 1996.

10. C. Daws, A. Olivero,S. Tripakis,andS. Yovine. The tool KRONOS. In Hybrid Systems
III, Verification and Control, volume 1066 of Lecture Notesin ComputerScience, pages
208–219.Springer-Verlag,1996.

11. C.Ericsson,A. Wall, andW. Yi. TimedAutomataasTaskModelsfor Event-DrivenSystems.
In Proceedingsof Nordic Workshopon ProgrammingTheory, 1998. To appearin a special
issueof NordicJournalof Computing.

12. K. Havelund,K. G.Larsen,andA. Skou.Documentationof theModelingandVerificationof
Bang � Olufsens’sIOPPowerDown Modulein UPPAAL. InternalAUC documentdelivered
to B&O. Earlyversionof this report.,September1997.

13. K. Havelund,A. Skou, K. G. Larsen,andK. Lund. Formal Modeling andAnalysisof an
Audio/VideoProtocol:An IndustrialCaseStudyUsingUPPAAL. In Proc.of the18th IEEE
Real-TimeSystemsSymposium, pages2–13,Dec1997.SanFrancisco,California,USA.

14. P.-H. Ho andH. Wong-Toi. AutomatedAnalysisof anAudio ControlProtocol. In Proc.of
CAV’95, volume939of LectureNotesin ComputerScience. Springer–Verlag,1995.

15. G. Holzmann.TheDesignandValidationof ComputerProtocols. PrenticeHall, 1991.
16. H.E. Jensen,K.G. Larsen,andA. Skou. Modelling andAnalysisof a Collision Avoidance

ProtocolUsing SPIN and UPPAAL. In The SecondWorkshopon the SPIN Verification
System, volume32 of DIMACS,Seriesin DiscreteMathematicsandTheoretical Computer
Science. AmericanMathematicalSociety, 1996.

17. K. G. Larsen,P. Pettersson,andW. Yi. DiagnosticModelCheckingfor Real-TimeSystems.
In Proceedingsof the4thDIMACSWorkshoponVerificationandControl of Hybrid Systems,
1995.

18. M. Lindahl,P. Pettersson,andW. Yi. FormalDesignandAnalysisof aGear-Box Controller.
In BernhardSteffen,editor, Proc.of the4th InternationalWorkshoponToolsandAlgorithms
for the Constructionand Analysisof Systems– LNCS1384, pages281–297.Gulbelkian
Foundation,March1998.Lisbon,Portugal.

19. R. Milner. CommunicationandConcurrency. PrenticeHall, EnglewoodClif fs, 1989.
20. S. Tripakis. Timed Diagnosticsfor ReachabilityProperties.In Proceedingsof TACAS’99,

LectureNotesin ComputerScience,1999.

